La Comunitat Valenciana al alza en el indicador de innovación, según el Índice de Competitividad Regional

La Comunitat Valenciana se sitúa, por primera vez, por encima de la media de la UE en el indicador de innovación, según el Índice de Competitividad Regional que publica la Comisión Europea. Este índice mide los principales factores de competitividad en 263 regiones europeas.

 

Desde 2010, el Índice de Competitividad Regional (ICR) de la UE mide los principales factores de competitividad de todas las regiones de nivel NUTS-2 de la Unión Europea. El Índice mide, con un rico conjunto de indicadores, la capacidad de una región para ofrecer un entorno atractivo para que las empresas y los residentes vivan y trabajen. La edición de 2022 del índice se basa en una metodología actualizada, por lo que se denomina ICR 2.0. La publicación del ICR 2.0 va acompañada de un conjunto de herramientas interactivas.

Haga clic en una región del mapa para acceder a las herramientas interactivas: https://ec.europa.eu/regional_policy/assets/regional-competitiveness/index.html#/

 

 

 

Estudios con radiotrazadores: del océano al cráter de un volcán

Fuente: IFIC

El cambio climático es uno de los grandes problemas a los que se enfrenta la sociedad y, para combatirlo, los equipos científicos desarrollan nuevas técnicas e investigaciones que nos ayuden a comprender, mitigar y reducir el impacto que está causando en nuestro planeta. Tanto en los océanos como en los suelos hay evidencias de cómo están cambiando las condiciones ambientales y, gracias a ello, se puede medir el impacto del cambio climático en el medioambiente y la biodiversidad.

Un radiotrazador es una sustancia que contiene moléculas en las que uno o varios átomos han sido sustituidos por un radioisótopo. Esto es, un isótopo radioactivo que se desintegra emitiendo partículas y radiación electromagnética denominada gamma. Gracias al desarrollo de instrumentación nuclear, se puede detectar esta radiación gamma y, de este modo, es posible utilizarlos para visualizar el flujo de ciertas sustancias a lo largo de diferentes recorridos. Esto permite diagnosticar enfermedades, evaluar el funcionamiento de sistemas hidráulicos complejos o, incluso, medir la captación de ciertas sustancias por seres vivos en ciertos ecosistemas en peligro. Se trata, por tanto, de una suerte de GPS, que permite identificar movimientos espaciales de diferentes sustancias.

En los últimos meses, en el marco de una colaboración entre el CSIC y la Universidad de Costa Rica, Enrique Nácher, investigador del CSIC en el Instituto de Física Corpuscular (IFIC, CSIC-UV) y Mario Cubero, catedrático e investigador de la Universidad de Costa Rica (UCR), han arrancado una colaboración para llevar a cabo una serie de estudios de medioambiente y cambio climático utilizando radiotrazadores. El objetivo es identificar problemas concretos y poder desarrollar posteriormente soluciones e investigaciones aplicadas. Para ello, se ha iniciado un importante trabajo de campo, destacando el estudio de los ecosistemas marinos y la recogida de muestras de diferentes tipos de suelos y sedimentos en el cráter de un volcán.

Desde las profundidades de mares y océanos…
El proyecto REMO, financiado por la GVA en el marco de la iniciativa ThinkInAzul, plantea hacer estudios de la sensibilidad de los moluscos y corales a la acidificación de los océanos y mares causada por el cambio climático. Para realizar estos estudios se utiliza Calcio-45 como radiotrazador, es decir, un isótopo radioactivo del calcio que permite saber dónde se acumula este y, por tanto, facilita investigar la síntesis del carbonato de calcio en las conchas de moluscos o esqueletos de corales en diferentes acuarios y con niveles de acidez distintos.

El Instituto de Física Corpuscular (IFIC), está estudiando, junto a investigadores del Oceanogràfic de Valencia, el aumento de la acidez de los mares y océanos como uno de los efectos directos del cambio climático por el incremento del dióxido de carbono (CO2) en la atmósfera. La medición de calcificación en acuarios con radiotrazadores, trabajando con corales y moluscos del Oceanogràfic resulta una técnica de análisis pionera en España, no es invasiva ni genera daño a las especies en estudio. Además, permite cotejar los resultados con los obtenidos en espacios abiertos, sirviendo de punto de apoyo en las investigaciones.

La parte más innovadora del proyecto se encuentra en el análisis del calcio que captan estos invertebrados, utilizando un detector que está desarrollando el IFIC con tecnología de instrumentación nuclear. Los investigadores emplean un radiotrazador disuelto en el agua -Calcio-45 radioactivo que no perturba el estudio-, y se mide la cantidad que capta el animal de una forma no perjudicial ni destructiva para su organismo. La técnica también permite monitorizar la captación de calcio de un mismo individuo durante todo su crecimiento y desarrollo.

En este sentido la colaboración con la UCR será muy enriquecedora puesto que en su Centro de Investigaciones Marinas (CIMAR) plantean experimentos similares de acidificación y captación de calcio en moluscos, utilizando otras técnicas indirectas, como la media incremental del peso, que permitirán la intercomparación de resultados con el proyecto REMO y el intercambio de know how.

Además de estos primeros estudios, el grupo del IFIC tiene como objetivo a largo plazo la implementación de su uso en otros campos de la investigación científica con ecosistemas marinos, como puede ser la nutrición, la parasitología, la microbiología y la ecología, en otros organismos que incorporan calcio en otras formas moleculares como las medusas y el sulfato de calcio.

… hasta el cráter de un volcán activo
Por otra parte, Nácher y Cubero realizaron el pasado mes de octubre una expedición que recorría diferentes localizaciones de Costa Rica. Una de ellas consistió en subir o, más bien, bajar, al cráter del volcán Poás, ubicado a 2.708 metros de altura, reconocido como una de las principales cumbres del país, considerado uno de los centros eruptivos más importantes de Costa Rica y una de las maravillas naturales del país. Al tratarse de un volcán activo, hay diferentes sustancias en el ambiente que dificultan la respiración, y por ello se debe ir bien protegido con máscaras respiratorias, y también la manipulación de aparatos electrónicos, debido a las condiciones del entorno.

Del cráter emanan gases continuamente, principalmente azufre y cloro, sin embargo, al contrario que en otros volcanes, la mayor parte del azufre reacciona con el agua del lago que cubre el cráter y precipita, quedando en forma sólida en la superficie del lago. El cloro no precipita y sale expulsado en forma de gas que se hace muy incómodo de respirar, provocando fuerte escozor de garganta y ojos, lo que hace indispensable el uso de máscaras apropiadas.

La subida al Poás se hace en coche, pero lo complicado es bajar al interior del cráter, ya que se trata de un descenso de cerca de dos horas entre zonas de lava sólida de la erupción de 2017, otras de tierra erosionada y sobre todo muchos cortados. Después, el recorrido por todo el cráter lleva otra hora y media tomando muestras de tierra, cenizas, lava, agua del lago con temperaturas de unos 50ºC y agua de las emanaciones, en las cuales, la temperatura alcanza los 70ºC. La presencia del vulcanólogo y guía Geoffroy Avard fue clave para poder realizar esta actividad de campo.

Además, el equipo también recorrió diferentes emplazamientos del Bosque Nuboso de Monteverde, una reserva natural de más de 10.500 hectáreas de selva tropical con una alta cantidad de biodiversidad, que cuenta con seis zonas ecológicas, el 90% de las cuales es bosque virgen. En esta ocasión los investigadores recorrieron distintas zonas del bosque buscando posibles emplazamientos cercanos a las estaciones meteorológicas existentes, llegando a localizarse cuatro, para dejar cubetas con distintos tipos de suelo como arcillas y pastos entre otros, y estudiar posteriormente la presencia de Berilio-7 usando detectores de radiación gamma.

El análisis de las muestras
El objetivo principal de esta expedición ha sido el análisis de las muestras recogidas durante el viaje, de forma paralela en los laboratorios de radioactividad ambiental de la Universitat de València, el LARAM, y de la Universidad de Costa Rica, el CICANUM. Este estudio busca la presencia de Berilio-7 en las muestras recogidas, puesto que se trata de un radioisótopo natural que se origina a partir de la interacción de los rayos cósmicos con la atmósfera terrestre, y se introduce en el debido a las lluvias principalmente. Es ideal, por tanto, para la medición de la redistribución del suelo, sobre todo mediante los procesos de erosión y sedimentación, ocasionada por las precipitaciones en cortos periodos de tiempo.

La obtención de los resultados de ambas investigaciones permitirá conocer mejor los procesos producidos en las zonas volcánicas y en los océanos, permitiendo así identificar problemáticas ambientales concretas y desarrollar estrategias para combatir el cambio climático y la crisis ambiental.

A corto y medio plazo los investigadores del IFIC y de la UCR continuarán esta colaboración para hacer medidas intercomparativas en el marco de estos proyectos de estudios ambientales con radiotrazadores, de especial relevancia para la consecución de los objetivos de desarrollo sostenible, en particular los relacionados con preservar los suelos, los mares y los océanos y las especies que habitan en ellos. Ambos grupos buscarán sinergias y aplicaciones a través de proyectos de intercambio en los que prima la interdisciplinariedad y la cooperación.

El IFIC presenta el Plan Complementario de I+D+i del programa Astrofísica y Física de Altas Energías

Fuente: IFIC
El Instituto de Física Corpuscular (CSIC-UV) coordina este programa de I+D+i que moviliza cerca de 8 millones de euros en la Comunitat Valenciana, financiando 30 proyectos de investigación
La exploración de lo más grande y lo más pequeño del universo es el objetivo, así como también la aplicación de las tecnologías desarrolladas en la lucha contra el cáncer, entre otros campos

El Instituto de Física Corpuscular (IFIC), centro mixto del Consejo Superior de Investigaciones Científicas (CSIC) y la Universitat de València (UV), ha celebrado hoy la presentación del Plan Complementario de Astrofísica y Física de Altas Energías en la Comunitat Valenciana. Este programa de I+D+i cuenta con un presupuesto a nivel autonómico de 8 millones de euros, financiados por la Generalitat Valenciana y el Gobierno de España, y está coordinado por el investigador del CSIC en el IFIC Carlos Lacasta. La exploración de los componentes microscópicos del universo y de objetos astrofísicos a grandes escalas y su interrelación es el objetivo científico de la propuesta, que también pone énfasis en la aplicación práctica de las tecnologías desarrolladas.

La presentación ha reunido a 60 personas expertas en la materia y ha contado con la participación de la consellera de Innovación, Universidades, Ciencia y Sociedad Digital, Josefina Bueno; la secretaria Autonómica de Universidades e Investigación, Mª Auxiliadora Jordá; el director general de Ciencia e Investigación, Jorge Arnau Llinares; el vicerrector de Investigación de la UV, Carlos Hermenegildo; el vicerrector de Investigación de la Universidad de Alicante, Juan Mora; y la directora del IFIC, Nuria Rius, entre otras autoridades. El acto ha sido moderado por la investigadora del CSIC, Carmen García.

El Plan Complementario de Astrofísica y Física de Altas Energías en la Comunitat Valenciana forma parte del proyecto “Tecnologías avanzadas para la exploración del universo y sus componentes”, donde participan siete comunidades autónomas: Andalucía, Aragón, Islas Baleares, Cantabria, Cataluña, Comunidad Valenciana y Madrid. Está financiado con cerca de 38 millones de euros, procedentes de las autonomías participantes y de fondos europeos aportados por el Ministerio de Ciencia e Innovación a través del Plan de Recuperación, Transformación y Resiliencia, que se nutre del Fondo de Recuperación ‘Next Generation’, aprobado por la UE para hacer frente a la crisis del coronavirus.
El programa de Astrofísica y Física de Altas Energías es una de las 8 áreas prioritarias de investigación que tanto el Gobierno de España como las comunidades autónomas quieren potenciar con los planes complementarios para I+D+i financiados con fondos del Mecanismo de Recuperación y Resiliencia. La Comunitat Valenciana participa en 5 de las 8 áreas de interés científico-técnicas: Ciencias Marinas; Comunicación cuántica; Agroalimentación; Astrofísica y física de altas energías; y Materiales avanzados.

Plan de Astrofísica y Física de Altas Energías en la Comunitat Valenciana

La iniciativa de la Comunitat Valenciana es la segunda con mayor financiación, cerca de 8 millones de euros, y está liderada por el IFIC. Entre las instituciones participantes en el Plan Complementario de Astrofísica y Física de Altas Energías de la Comunitat Valenciana están están el Consejo Superior de Investigaciones Científicas (CSIC), la Universitat de València (UV), la Universidad de Alicante (UA), la Universidad Miguel Hernández (UMH) y la Universidad Politécnica de Valencia (UPV).
Para Josefina Bueno, “estas disciplinas necesitan de proyectos de investigación muy ambiciosos acometidos por grandes colaboraciones nacionales e internacionales. En ese sentido, es importante consolidar y mantener a nuestros grupos en la vanguardia de este esfuerzo, además de potenciar su visibilidad para optimizar la explotación científica de los proyectos de investigación y para permitirles involucrar al tejido industrial desde los estadios más tempranos de los proyectos en los que participan. Otro de los grandes objetivos es potenciar la coordinación con otros grupos nacionales para incrementar la visibilidad y peso específico en las colaboraciones internacionales, de forma que les permita acometer objetivos más ambiciosos”.
La exploración de las leyes del universo, desde sus componentes microscópicos fundamentales a los objetos astrofísicos a grandes escalas y su interrelación, está detrás de los objetivos primordiales de esta propuesta. “El programa tiene un marcado carácter tecnológico, y hace hincapié en el desarrollo de los instrumentos que nos permitan alcanzar estos objetivos y preparar el camino a lo desconocido”, explica el coordinador, Carlos Lacasta. Para ello se financian 30 proyectos de investigación.

Los avances científico-tecnológicos que se llevan a cabo en estos proyectos tienen aplicación práctica en otros ámbitos, como la física médica (tanto para el diagnóstico por imagen como la monitorización de nuevas terapias contra el cáncer), u otros campos, como el control y la monitorización del desmantelamiento de centrales nucleares.

Más información:
https://rendiciocomptes.gva.es/es/plans-complementaris-en-les-arees-prioritaries-d-investigacio-en-astrofisica-i-fisica-d-altes-energies-i-materials-avancats

IFIC group develops technology to better visualize the distribution of radiopharmaceuticals in the patient’s body

The IRIS group at IFIC, coordinated by researcher Gabriela Llosá Llácer, specializes in the development of detectors for medical applications.

This technology has been previously used in astroparticle experiments or even for the detection of radioactive focuses after nuclear accidents.

A group from the Instituto de Física Corpuscular (IFIC), a joint center of the Consejo Superior de Investigaciones Científicas (CSIC) and the Universitat de València, is developing a photon detection and imaging system that will allow to visualize during a medical treatment the distribution of the radiopharmaceutical in the patient’s body and, in this way, verify that the radiopharmaceutical accumulates in the expected place and better estimate the radiation dose received by the tumor and the rest of the organs.

The IRIS (Image Reconstruction, Instrumentation and Simulations for medical applications) group, coordinated by IFIC researcher Gabriela Llosá Llácer, specializes in the development of detectors for medical applications. The research team has focused its efforts on medical imaging and, in particular, on the monitoring of hadronic therapy or the verification of radiopharmaceutical treatments, in the latter case with the aim of improving the visualization of their distribution in the human body when administered to the patient.

As Llosá explains, “the photon imaging systems currently in use generally have low efficiency, and have greater difficulty when there are photons of different energies, when these energies are higher than those of the radiotracers used for diagnosis, or, in certain areas, when the energy of the incident photons is unknown”.

The technology developed by the IFIC research group consists of a photon detection and imaging system based on lanthanum bromide crystals coupled to silicon photomultipliers that uses two or three detectors in time coincidence and, compared to conventional systems, offers higher detection efficiency, very good spatial resolution and a large field of view with a compact detector.

In addition, according to Llosá, “we have devised and patented a noise reduction method that allows us to work in adverse low-signal scenarios and we are also using artificial intelligence to improve the image”.

According to Jorge Roser, CSIC researcher at IFIC, “to find out the incident energy of the photons in our detector, we have developed analytical models of image formation that improve the traditional reconstruction algorithms and allow us to obtain four-dimensional images, where the fourth dimension is the energy of the incident gamma rays”.

Previous applications

This technology has been previously used in astroparticle experiments or, for example, for the detection of radioactive foci after nuclear accidents on board drones or robots.

In the medical field, the IRIS group has carried out experiments in collaboration with proton therapy centers such as Quirónsalud (Madrid) for the monitoring of hadronic therapy, and with La Fe hospital (Valencia) for the verification of treatment with radiopharmaceuticals. At present, this technology has entered a valorization phase in which the device is being tested in relevant environments to increase its TRL (method for estimating the progress of a technology), and the aim is to arouse the interest of companies to ensure future commercialization of the device. This is carried out within the VALMONT (INNVA1/2021/37) and VALID (PDC2021-121839-I00) projects, funded by the Valencian Innovation Agency and the State Research Agency, respectively.

 

El Consell lanza una convocatoria de 49 millones de euros en ayudas a proyectos de innovación, que refuerza el apoyo a las empresas

NOTA DE PRENSA Gabinete de comunicación de Presidencia de la Generalitat

  • El Diari Oficial de la Generalitat publica la nueva convocatoria anual de la AVI, que permanecerá abierta hasta el próximo 21 de abril
  • La Agència prevé financiar alrededor de 350 proyectos de I+D+i, en los que colaborarán distintos agentes del sistema de innovación

El Consell, a través de la Agència Valenciana de la Innovació (AVI), ha lanzado una nueva convocatoria de ayudas en concurrencia competitiva dirigida a fortalecer y desarrollar el sistema de innovación, según ha publicado el Diari Oficial de la Generalitat Valenciana (DOGV).

Se trata de un nuevo llamamiento público para resolver retos de interés común a través de la I+D+i, en el que, como novedad, se reforzará tanto la participación de empresas como la dotación económica de los dos programas con mayor impacto en el tejido productivo, a fin de impulsar los proyectos estratégicos en cooperación y la consolidación de la cadena de valor empresarial.

En total, la AVI ha dispuesto un presupuesto global máximo de 48,95 millones de euros para esta nueva edición de sus programas de apoyo a la I+D+i en colaboración, que permanecerá abierta a la recepción de proyectos hasta el próximo 21 de abril.

La nueva convocatoria está cofinanciada al 60% por el Fondo Europeo de Desarrollo Regional (Feder), a través del programa de la Comunitat Valenciana para el periodo 2021-2027, y se alinea con la nueva Estrategia de Especialización Inteligente S3, que ha diseñado la Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital.

Se estima que, con la actual asignación económica, la AVI podrá financiar en torno a 350 iniciativas de innovación, que se ejecutarán en un máximo de tres anualidades, en función del tipo de programa y las características de cada proyecto.

Las seis líneas de ayuda de la Agència incentivan el desarrollo de proyectos de innovación en las empresas y facilitan la transferencia de conocimiento y sus aplicaciones al tejido productivo, fomentando, además, la colaboración público-privada y la cooperación entre centros tecnológicos y de investigación y empresas.

De hecho, la AVI requiere de la colaboración de, al menos, dos agentes del sistema para optar a cualquier tipo de incentivo, al tiempo que se continuará priorizando, como hasta ahora, aquellas iniciativas que ofrezcan respuesta a los retos y soluciones que previamente han identificado los diferentes comités de especialistas que asesoran a la entidad.

Como novedad, este año se reforzará el peso de las empresas en los principales programas de ayuda con el objetivo de estimular su participación y cooperación con otras organizaciones. Así, las mercantiles deberán asumir ahora la mitad del coste de ejecución de cada proyecto estratégico, donde también se exigirá la concurrencia de al menos una pyme entre las entidades que trabajarán conjuntamente en el desarrollo de dichas iniciativas de I+D+i.

Esta última obligación, es decir, la participación de un pequeña o mediana empresa, se extenderá también a los proyectos en colaboración que se presenten a la línea de consolidación de la cadena de valor, la segunda por volumen de fondos.

Precisamente ambos programas, que ya copaban el grueso del presupuesto de la convocatoria, experimentarán un nuevo incremento en su asignación hasta alcanzar el 70% del total. Se trata de las dos líneas que, año tras año, suscitan una mayor demanda y las que generan también un impacto más notorio en el sistema productivo, ya que están abiertas a la participación de empresas.

En el caso de los proyectos estratégicos en cooperación, la AVI ha elevado la partida económica hasta los 20,75 millones de euros, un 20% más que hace un año, para incentivar la cooperación de la comunidad científica, los institutos tecnológicos y el empresariado en el desarrollo conjunto de soluciones a retos de interés común.

De este modo, se reforzará el desarrollo de iniciativas que requieren necesariamente de la colaboración de los diferentes agentes del sistema de innovación por la complejidad y el elevado esfuerzo económico que representan.

En la misma proporción aumenta la dotación del programa de apoyo a la consolidación de cadena de valor empresarial, que contará con 13,90 millones de euros para respaldar el diseño de soluciones que impliquen novedades en productos o procesos, o bien mejoras en el intercambio de información y procedimientos de trabajo con impacto en el conjunto de la cadena de valor.

La adecuación de la convocatoria a los requisitos derivados de la financiación europea también conlleva otras novedades para las organizaciones que soliciten los incentivos de la AVI. Y es que, a partir de ahora, deberán justificar que sus proyectos de innovación no generarán ningún impacto negativo en el medio ambiente.

Por último, en el programa de Promoción del Talento se otorgará una mayor flexibilidad a los centros de investigación que concurran a la línea de agentes de innovación. En concreto, cada entidad podrá presentar un máximo 4 solicitudes, frente al máximo de tres vigente hasta la fecha.

Apoyo al talento y la transferencia

Más allá del impulso a los proyectos estratégicos y de consolidación de la cadena de valor, destaca el respaldo al programa de Valorización, transferencia y resultados de investigación a las empresas, que dispone de 7,6 millones de euros.

Estos fondos no sólo permitirán desarrollar ensayos, pruebas piloto y demostradores, sino que garantizan financiación para las Unidades Científicas de Innovación Empresarial (UCIE) constituidas en universidades y centros de investigación de excelencia.

La AVI proseguirá apoyando la atracción y retención de profesionales cualificados a través de tres líneas específicas de ayuda. Los 4,85 millones consignados a tal efecto podrán sostener la actual red de agentes de innovación, al tiempo que respaldarán a las empresas que formen a doctorandas y doctorandos industriales o que contraten personal investigador y técnico de Formación Profesional vinculados a la ejecución de proyectos de innovación.

Otra de las líneas estratégicas para la Agència, la de impulso de la Compra Pública de Innovación (CPI), superará este año el millón de euros. Este presupuesto se destinará a potenciar tanto la demanda de productos y servicios innovadores en la Administración, como a estimular a las empresas para que concurran a este tipo de licitaciones nacionales e internacionales.

Por último, se contemplan 800.000 euros para impulsar acciones de fortalecimiento del sistema valenciano de innovación. A través de este programa se pretende reforzar las estructuras de apoyo a la innovación existentes en la Comunitat, así como facilitar la difusión de la I+D+i entre las empresas.

Más de 500 beneficiarios y 139 millones concedidos

Desde 2018, un total de 520 organizaciones distintas, entre las que se encuentran empresas, universidades, centros tecnológicos y de investigación y entidades locales, se han beneficiado de las ayudas en concurrencia competitiva de la Agència Valenciana de la Innovació.

En total, la AVI ha concedido alrededor de 139 millones de euros para respaldar el desarrollo de acciones de I+D+i en cooperación con el fin de optimizar el funcionamiento del sistema de innovación de la Comunitat y potenciar las sinergias entre sus diferentes eslabones.

Las ayudas de la Agència han movilizado, a su vez, 76 millones de inversión privada que, junto a la aportación pública, han permitido desarrollar 881 iniciativas en los últimos cinco años.

 

Información sobre la convocatoria:

 

IFIC’s UCIE at TRANSFIERE 2023

Agents of the Scientific Unit for Business Innovation (UCIE) Ana Isabel Delgado and César Senra, represented IFIC at the latest edition of TRANSFIERE, held on February 15, 16 and 17 at the Palacio de Ferias y Congresos de Málaga.

TRANSFIERE has established itself in recent years as the main R&D&I meeting in Southern Europe to share scientific and technological knowledge, promote innovation and connect science and business. The 2023 edition, which has been the twelfth edition of this event, has closed with the participation of more than 4,300 professional visitors and more than 420 speakers who have debated around more than 80 thematic panels of maximum interest for the innovative ecosystem, such as green hydrogen as a sustainable alternative to fossil fuels, or the Strategic Projects for Economic Recovery and Transformation (PERTE).

The experience of the agents in this type of events has been worth attending this time with a previous work of defining objectives, implementation of processes for the identification of participants of interest and with a pre-established communication plan (including the development of renewed cards for the promotion of scientific and technical capabilities of IFIC), in order to improve the results of previous attendances. Through the agenda of B2B meetings and visits to stands, several contacts for potential collaborations were established, as well as proposals for innovative financing and training tools in different aspects of intellectual property.

It is also noteworthy the presence at the event of several agents of the network innoagents of the Agència Valenciana d’innovació (AVI), which has helped to give a greater presence and to exalt the work of the Agency among the attendees. It has also been noted that the transfer model of the Valencian Autonomous Region was referenced in various interventions as a model of success and that it is serving as a reference for other communities.

On the other hand, the CSIC, as an activity within the Comte-Innovation program, has promoted the participation of IFIC researcher Luis Caballero for the presentation of MAGAS, a device that combines gamma imaging techniques with ultrasound imaging, and improves image-guided biopsy procedures.

Technological applications of particle accelerators, the focus of the next IFIC colloquium

Over the last century, particle accelerators have been associated with basic physics: they have been tools of discovery and exploration of new frontiers, areas in which they have achieved numerous successes. Their interest for basic science is associated with the possibility of concentrating large amounts of energy in a small volume, which allows the production of heavy particles to which we do not normally have access or the exploration of regimes in which matter is subjected to very high temperatures. Examples of great results in this direction have been the discovery of the Higgs boson, the study of the internal structure of the proton or the creation of the first neutrino beams for research.

In recent decades, however, accelerator technology has found more and more applications as it has matured and become more accessible. One of the fields in which these applications have been most visible is medicine, where particle beams can be used to treat ailments, especially when surgery is not a good option. Within this field several options have appeared, since the beams used can be of photons, protons or even nuclei. Other areas in which accelerators have found application are, for example, crystallography, analysis of archaeological remains or materials physics.

In this week’s colloquium at IFIC, our colleague Juan Fuster will talk to us about the fields of application that are opening up for accelerator technology today, well into the 21st century. Medicine continues to be a strong motivation for the development of this technology, but industry is also coming on board as an increasingly powerful driver. In particular, he will dwell on the role that IFIC can play in these initiatives and on the collaboration with the Center for the Development of Industrial Technology (CDTI) of the Ministry of Science and Innovation to participate in a future center for medical treatment using ion therapy.

Juan Fuster Verdú is Research Professor at CSIC and member of IFIC since 1996. He has developed his research career in experimental high-energy physics, as a member of the CELLO, DELPHI and ATLAS experiments, and is also heavily involved in the development of detection technology for the future linear accelerator. His current research is mainly focused on top quark physics. He has been director of IFIC, and also vice-director of Technology and Innovation, a stage during which he promoted the creation of the UCIE that exists today at the institute. Since 2019 he is the CSIC Institutional Delegate for the Valencian Community.

The colloquium will take place next February 16 at 12:30h in the Assembly Hall of the Head Building of the Parc Científic and will also be offered telematically through Zoom. Check the events agenda to access the seminar.

IFIC, the sole research center among the top 10 national institutions according to the Nature Index

The Nature Index is an indicator of excellence of Nature Research, one of the most prestigious scientific journals in the world, obtained from a database of the institutions of the authors of scientific articles published in 82 high-impact scientific journals in four major areas: Chemistry, Earth and Environmental Sciences, Life Sciences and Physical Sciences. These journals, although they represent only 4-5% of those covering the natural sciences in the best known database, Web of Science, accumulate about 30% of the total citations.

There is an entry in the Nature Index both for large institutions such as CSIC, universities and their equivalents in other countries (CNRS in France, the German Max Planck Society, INFN in Italy, etc.) and for research centers. In the latter, the Institute of Corpuscular Physics (IFIC, CSIC/UV) is reflected, in such a way that its publications are assigned equally to the two institutions on which it depends: the CSIC and the Universitat de València.

The institutions are ranked using two factors (Count and Share), both calculated from the corresponding publications in any of the journals of the selection during a 12-month period. The default ranking uses the Share indicator, which is obtained by considering that all the authors of an article make an equal contribution. It thus favors more theoretical papers, where the number of authors is usually smaller. On the other hand, the Count factor is simply the total number of publications, so it prioritizes institutions with the highest scientific productivity.

In the latest update of the Nature Index, which takes as reference the period from November 1, 2021 to October 31, 2022, IFIC occupies the ninth position in Spain, in a ranking that leads the whole CSIC, an institution with more than 120 research centers throughout Spain. It is followed by the Barcelona Institute of Science and Technology (BIST), a foundation that brings together seven research centers in Catalonia, and several universities, including the Universitat de València in fifth place.

This ranking has been calculated by comparing the Share factor of all Spanish institutions, i.e., adding the proportional contribution of their authors to each publication, and not the overall number of scientific articles. Therefore, IFIC is currently the national research center with the highest Share factor in the Nature Index ranking.

IFIC is a center dedicated to research in nuclear, particle and astroparticle physics and its applications, both in medical physics and in other fields of science and technology. With a history dating back to the 1950s, IFIC is a pioneer in Spain in the investigation of the constituents of matter. It participates in international experiments such as those carried out at CERN’s Large Hadron Collider (LHC), KM3NeT or FAIR, both considered priority scientific infrastructures for Europe.

 

Fernando Hueso Gonzalez receives the Bruce H Hasegawa Young Investigator Medical Imaging Science Award

Every year the Institute of Electrical and Electronics Engineers (IEEE) through the Nuclear Medical and Imaging Sciences Technical Committee (NMISTC), one of the bodies responsible for medical imaging, awards several highly reputable prizes in the field of medical physics. In this edition, Fernando Hueso González, CDEIGENT researcher at the Institute of Corpuscular Physics (IFIC, CSIC-UV) has received the Bruce H Hasegawa Young Investigator Medical Imaging Science Award 2022.

Fernando Hueso’s work focuses mainly on improving the precision with which proton therapy cancer treatments are delivered. Thanks to the development of high-resolution radiation detectors, it is possible to verify in real time and with millimeter precision that the proton beam is aimed at the right place (the tumor), thus avoiding collateral damage to surrounding healthy tissues. Other lines of research are the optimization of dosimetry in brachytherapy and the prevention of collisions between the machine and the patient in radiotherapy.

The NMISTC Council is in charge of the management and promotion of activities useful to its members. One of its actions is to invite committee members to nominate people for the NMISTC Awards. In this case, Magdalena Rafecas López, former UV professor and IFIC researcher, and currently researcher at the Institute of Medical Engineering of The University of Lübeck and member of the IEEE Transactions on Radiation and Plasma Medical Sciences committee, presented the nomination of Fernando Hueso.

These awards are announced annually and candidates are judged on the basis of their contribution to medical imaging science, demonstrated by the technical merit and creativity of their research. Priority is given to nominees whose research has been published in peer-reviewed journals, especially if the nominee is the first author. The award consists of 1500 € and a plaque which was presented during the “2022 IEEE Nuclear Science Symposium, Medical Imaging Conference”.

“It is an honor to receive this award as a young researcher for my career in medical imaging. It is a recognition of years of hard work, together with the privilege of working in leading hospitals such as OncoRay or Mass General Hospital, which have provided all the means at their disposal to develop this research. I would also like to thank Prof. Magdalena Rafecas for the nomination, as well as Dr. Guntram Pausch and Prof. Thomas Bortfeld for their letters of recommendation,” says Fernando.

Fernando Hueso González studied the Master in Advanced Physics at the Universitat de València in 2011-2012. The following four years he was at the proton therapy center of the Technische Universität Dresden (OncoRay), doing his PhD in real-time therapy monitoring from fast gamma rays. Subsequently, he worked as a postdoc at Massachusetts General Hospital to transform a gamma spectrometer from a ‘laboratory’ to a clinical prototype for first application with patients. He is currently continuing his research at IFIC (CSIC/UV) in the IRIS Medical Physics group, thanks to the GenT program (GVA).

Image credits: Ralf Engels

Developments of ion therapy against cancer are discussed at the Casa de la Ciència del CSIC in Valencia

The headquarters of the Spanish National Research Council (CSIC) in the Valencia Region is today hosting a conference organized by the Institute of Corpuscular Physics (IFIC, CSIC-UV), CIEMAT and the Castellón Provincial Hospital Foundation to discuss the future of ion therapy in the fight against cancer in Spain. Attended by more than 60 experts from the fields of research, health, industry and public administration, the meeting opens a debate on the benefits of this new technique in an international context of implementation of heavy particle therapies against cancer. In addition, the technological challenges necessary to achieve its application in the medical field will be addressed.

The regional secretaries for Universities and Research, Carmen Beviá, and for Efficiency and Health Technology, Concha Andrés, as well as the executive vice-president of the Valencian Innovation Agency (AVI), Andrés García Reche, the vice-rector for Research of the UV, Carlos Hermenegildo, and the vice-president for Organization and Institutional Relations of the CSIC, Carlos Closa, will participate in the conference.

The institutional delegate of the CSIC in the Valencian Community, Juan Fuster, is one of the promoters of this conference, where the challenges for the implementation of ion therapy in Spain in the next decade are analyzed. “This requires a process of innovation that simplifies the instrumentation of the equipment and makes it possible to convert hospital spaces and make them suitable for therapy with heavy particles or hadrontherapy,” says Fuster, a CSIC researcher at the Institute of Corpuscular Physics.

Both conventional radiotherapy and hadrontherapy require accelerators that send the particles to the tumor tissue to destroy it. Radiotherapy uses photons, while hadrontherapy uses heavier particles such as protons (components of the atom’s nucleus) or ions (atoms that have had electrons removed). The complexity of heavy particle accelerators makes them more difficult to implement in hospitals, although this type of therapy has advantages: it is more effective, allows localized treatment of the tumor and reduces toxicity.

For Carlos Ferrer, general manager of the Castellón Provincial Hospital Foundation, “although cancer treatment with radiation is receiving a great boost in Spain, there are tumors in which much remains to be done. In sarcomas, pancreatic tumors or central nervous system tumors, commercially available technologies, whether with photons or protons, do not offer sufficiently satisfactory results. There is room here for ion therapy, which has not yet been developed, despite its great therapeutic potential.

While proton therapy is already implemented in developed countries (Spain has a plan to provide the public health system with 10 proton therapy units in collaboration with the Amancio Ortega Foundation), ion therapy is not yet developed despite its great therapeutic potential. “It is estimated that this technique optimizes the dosimetric benefit in oncology patients by three to five times compared to conventional therapy, both X-ray and proton therapy,” says Ferrer.

Most ion therapy facilities are based on a circular accelerator with a circumference of 60 meters, whose relatively high cost limits its expansion. “The challenge is to develop accelerators that are more compact, simpler and cheaper to operate and maintain,” summarizes José Manuel Pérez, head of CIEMAT’s Technology Department. “Linear accelerators based on radiofrequency systems (linacs) represent a reasonable alternative due to their capacity to vary the characteristics of the ion beam, particularly its energy, a modular design in line with the installation and a reduction in cost. For this reason, their development is one of the fundamental lines for a breakthrough in ion hadrontherapy”.

The conference brings together at the Casa de la Ciència representatives from CSIC centers, CIEMAT, Valencian public universities and other research organizations (CIPF, Institut Curie de Paris, Heidelberg Ion-Beam Therapy), together with doctors (hospitals of La Fe, Clínico Universitario and General de Valencia, San Juan de Alicante, Castellón, Vall d’Hebrón in Barcelona and the Clínica Universidad de Navarra in Madrid), representatives of the Center for Technological Development and Innovation (CDTI, Ministry of Science and Innovation), the Spanish Science Industry Association (INEUSTAR) and the Valencian Innovation Agency (AVI).

The participants contribute to outline the current panorama and future needs of cancer treatments with particle accelerators, from advances in conventional radiotherapy, through the implementation of proton therapy in Europe to ion therapy. This would complete a network with different levels and characteristics for treating patients depending on the type of tumor.

This is what is being developed in our neighboring countries, where, together with the progressive implementation of proton therapy centers, other carbon ion centers are being planned. Thus, for example, Italy has 3 proton therapy units in operation and one carbon ion unit, and 2 additional units are being installed. France, the United Kingdom, Germany and Switzerland have similar circumstances.